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Clustering of Particles in Colloidal and Molecular Fluids 

DAVID M. HEYES 

Department of Chemistry, Royal Holloway and Bedford New College, 
University of London, Egham, Surrey TW20 OEX, UK.  

(Received 5 October 1988) 

A review is given of the nature and implications of cluster formation in colloidal and molecular systems. We 
consider large clusters that can be described in terms of the fractal dimension and percolation exponents. 
The role of computer molecular simulation is discussed as a new method for probing random clustering of 
particles, short range structural correlations being of diminished importance here. 

KEY WORDS: Fractal, percolation, growth 

1 INTRODUCTION 

Randomly associating particles have a complicated non-symmetrical structure and 
are therefore difficult to characterise. They lack a suitable reference state from which 
to base perturbation treatments of their properties. (Dense gases have the ideal gas 
and solids have the Einstein crystal.) This leads one to expect that there may well be 
an infinite set of parameters needed to characterise their list of properties. This is a 
somewhat depressing concept and progress would otherwise have been slow but for a 
major advance made about 10 years ago. Mandelbrot then introduced the concept of 
fractal objects which allowed the properties of these cluster forming particles to be 
encapsulated in a quantitative fashion using a small number of parameters called 
fractal dimensions’. Since then it has become apparent that far from being the 
exception,fractal aggregates are so common in nature that they surely must now have 
an importance at least equal to that of the crystal, liquid and gaseous phases of 
matter2s3. They are, for example, the automatic outcome of the natural “growth” 
processes involved in sedimentation, deposition and flocculation. 

A fractal object has a mass, m(r), that scales as its ‘effective’ radius, r, as 

m(r) - rdf, (1) 

where d j  is the fractal dimension. The value of d j  I d ,  where d is the dimension of the 
space in which the fractal exists. As the object becomes more ‘open’ then it will have a 
smaller fractal dimension. 

Although non-equilibrium growth processes are a common source of fractals they 
also occur in equilibrium particle distributions, for example. The long-range structure 
of molecular fluids at arbitrary density can also be described by fractals. The different 
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126 D. M. HEYES 

routes have an influence on the value of d,, which is therefore a probe of the 
underlying physics. 

2 COLLOIDAL AGGREGATES 

Irreversible clustering is of predominant interest here. The aggregation of stabilised 
particles (‘monomers’) suspended in a liquid can be induced by the addition of a salt 
solution for charge-stabilised particles and other (smaller) particles for sterically 
stabilised particles. In the case of charge stabilisation, the salt solution decreases the 
Debye-Hiickel screening length so that particles can approach close enough for the 
van der Waals interactions to ‘trap’ the particles in a pair-potential well. The 
monomer size and salt concentration can be manipulated to cause the growth of 
macroscopic clusters ( - 1 mm) within an experimentally suitable time-scale. 

The properties of the aggregates can often be expressed in terms of a fractal 
dimension, although the value of d, is often sensitive to the particular property. 

The structures obtained have a density-density correlation function, g ( r )  of the 
power law form, g(r) - rdf-d.4 This structure can be probed by low-angle scattering of 
neutrons, X-rays or visible light. The scattered intensity with scattering angle 0 is 
given by, S ( k )  - K d f ,  where k = 471 sin @/A and I is the wavelength of the incident 
beam’. The structure factor obeys this relationship for r o  -3 k - l  -3 R ,  where ro is the 
radius of the monomer and R is the approximate radius of the cluster. In the zero k 
limit, ( S ( k )  - S(O))/S(O) - k 2 R 2 .  Therefore, scattering experiments can lead to some 
very useful geometrical and size parameters for the clusters5. 

Lattice simulations of idealised aggregation mechanisms have been made, which 
have helped interpret the experimental data6. The growth of a cluster could be viewed 
as the accumulation of randomly walking monomer units attaching themselves to a 
single growing cluster. Despite recent observations of some dependence on the 
lattice symmetry, this diffusion-limited-aggregation or DLA model leads to a repro- 
ducible d, = 1.70 in 2d and d, = 2.50 in 3d. (Asymptotically large DLA clusters grown 
in 2d on lattices with m-fold symmetry exhibit m-fold star-shaped anisotropy’.) The 
cluster-cluster aggregation or C C A  model is an alternative scenario. Here, the larger 
clusters grow by the coming together of smaller clusters. This leads to more open 
clusters, characterised by d, = 1.44 in 2d and d, = 1.78 in 3d. Some recent studies on 
gold and silica particle dispersions, and polystyrene lattices’ of ro - 7 - 500nm have 
yielded d, of 1.75 & 0.1 when fast aggregation is induced by high concentration of an 
inert smaller particle (an osmotic effect called ‘depletion’ f l o c c u l a t i ~ n ~ ) ~ ~  or salt 
solution’. This conforms to the CCA model. Slow aggregation yields d, = 2.1 & 
( ) J 4 , 5 . 1 1 .  

In  the fast aggregation regime there is a power-law increase with time of the cluster 
size r - t1’df.8 Power law relaxation is a signature of critical slowing down, observed 
in e.g., glass-formation”. The time-dependence of the growth can also be of a 
stretched exponential form, exp - (t/s)O or the algebraic form - c- ‘  depending on the 
nature of the microscopic dynamics e.g., the distribution of energy barriers for 
deposition. The fractal clusters grown are kinetically unstable. Fast aggregating 
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CLUSTERING IN MOLECULAR SYSTEMS 127 

particles have been observed to restructure with time to a more compact structure 
with d - 2.1 f 0.1. 

As will be discussed below the physical properties of the aggregates are often 
dominated by the largest cluster. When this cluster extends to infinite extent it is said 
to “percolate”. Percolation theory has enabled the structural statistics of an ensemble 
of clusters to be encapsulated in a number of scaling laws of the form, X - t p  where X 
is some statistical property and E is the “distance” from the density at which 
percolation takes place (the so-called “percolation th re sh~ ld” ) ’~ - ’~ .  The exponent p 
is universal, i.e., is independent of lattice symmetry and the nature of the interactions 
(but does depend on the dimension). So far, their are less than 10 exponents that 
specify the entire structural and geometrical statistics of the lattice system. Physical 
properties also appear to depend on similar relationships, although here the link is 
somewhat less well-founded. This is because the (imprecise) distance-scale of the 
intermolecular forces governing the physical property has to map onto the geometry 
of the percolation clusters. Despite this reservation, the approach has had great 
success. For example electrical conductivity of conducting particles in an insulating 
medium goes as -2,  where t = 1.27 in 2d and t = 1.9 f 0.1 in 3d15. The elasticity of 
the fractal networks was at first thought to be proportional to the electrical 
conductivity of the corresponding random resistor network. I t  is now established that 
the elasticity approaches zero at  the percolation threshold with an exponent, T, much 
larger than t .  T is 3.9 f 0.3 in 2d16. The value of T in 3d would appear to be close to 
4.0 also”. I t  has been proposed that, T = t + 2v, where v is a percolation statistics 
exponent (see below)’*. The threshold density, for rigidity percolation coincides with 
the percolation threshold for strongly associating aggregates but occurs at higher 
density for weaker interacting particles (because the infinite cluster back-bone needs 
to be more multiply inter~onnected)’~,~’. One step further removed from this is a 
break-down stress in strained lattices” and yield-stress in aggregates’ ’. Preliminary 
studies indicate similar scaling laws also. 

f .- 

3 MOLECULAR FLUIDS 

We now consider clusters of molecular fluids and some of the principles that 
determine their formation, in terms of Percolation statistics. For this we need to 
specify our meaning of a cluster. A cluster is defined as a group of molecules 
interconnected by an arbitrary coordination-distance. In an infinite system above the 
percolation threshold number density there is a finite probability that clusters will 
form spanning all space. There are universal exponents that characterise cluster 
statistics about the percolation threshold in lattice systems composed of non- 
interacting particles’ 3.14. In lattice systems universality refers to the independence of 
the value of the exponents to lattice coordination number. In calculations on of-  
lattice or continuum noninteracting disks2’ and spheres23 the exponents are the same 
as those from the lattice simulations. Recent studies on continuum interacting fluids 
generated by Monte Carlo simulation suggests that the values of these exponents are 
the same for these assemblies, as well as being independent of the nature and range of 
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128 D. M. HEYES 

the interaction potential. The fluids studied so far by MC simulation have been 
hard-spheresZ4, square-wells” and adhesive-spheres26. 

In continuum systems, a set of particles is considered to be part of the same cluster if 
each member is separated from at least one of the others by a distance So,, which is 
arbitrary but is usually -o, the core diameter of the particle. A percolating cluster is a 
special cluster having infinite extent. Within the framework of the periodically 
repeating cells of Molecular Dynamics, a sufficient criterion for percolation is for a 
particle and its image to belong to the same cluster. Of particular interest is the ratio, 
as/a and its influence on the exponents. As this ratio diminishes to unity the hard-core 
starts to dominate the extent of overlap of the shells. We term this the soft-core to 
hard-core transition. 

To maintain consistency with accepted notation, the density is given the symbol, p, 
here, rather than, p, as is usual for the reduced density of continuum fluids treated in 
molecular simulation. For an infinite number of molecules there is a well-defined 
density, pc, at which there is a finite probability of finding a percolating c l u ~ t e r ’ ~ * ’ ~ .  
Above and below the percolation density many finite sized clusters exist. These 
occupy the holes in the percolating cluster above pr. The distribution of different sized 
clusters is characterised by the cluster number distribution function, n,, which is the 
time average number of clusters containing s particles, Ns divided by N i.e., n, = N J N .  
This is consistent with the definition used in other continuum ~ o r k s ~ ~ * ~ ’ ,  whereas the 
cluster number definition used in lattice studies is pNJN13*14. For finite periodic 
systems there is an upper bound on s, i.e., 1 I s I N .  

The behaviour of lattice systems close to pr is described in terms of the following 
critical exponents. 

The following summations involving n, will only involve non-percolating clusters. 
Let ((p) be the “correlation” lengthscale of the largest cluster, then’ j*14, 

t(P) cc IP - PA-’. (2) 
In Id, v = 1 ,  in 2d, v = 1.35 and in 3d, v = 0.88 & 0.0213. Therefore 5 diverges at pc, 
approaching from either side, which is typical of critical behaviour. The zero’th 
moment of n, is, 

In Id, tl = 1 ,  in 2d, a = -0.67 whereas in 3d the value is not known3. Here and for all 
the sums below we are interested in the “single” or nonanalytic part of the sum over 
all cluster sizes13. For each sum we must subtract off the analytic background. This is 
so we isolate that part of the sum dominated by the representative (i.e., largest) cluster 
in the vicinity of the percolation threshold. Let the percolation probability, P , ,  be the 
fraction of molecules found in the percolating cluster. Thenl4vZ6, 

p ,  cc ( P  - PY. (4) 

where in Id, p = 0, in 2d, p = 0.14 and in 3d, p = 0.454 0.00813 and p 2 pc. In lattice 
studies this corresponds to the fraction of occupied sites belonging to the infinite 
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CLUSTERING IN MOLECULAR SYSTEMS 129 

percolating network. The susceptibility, x, is 

where in Id, y = 1 ,  in 2d, y = 2.43 and in 3d, y = 1.78 k 0.066. The ""' denotes the 
omission of the largest cluster at each sample configuration. The largest cluster 
discovered each time step can either be a percolating cluster, should one (or more) 
exist, or the largest non-percolating cluster (should there not be a percolating cluster). 
In polymer science the susceptibility, x, corrresponds to the mass average molecular 
mass whereas c: sn , (p)  corresponds to the number average molecular mass. About p c ,  

x = c-  IP - P c l - y ,  (6) 

x = C + l P  - PcI-y ,  

for p I pc  and, 

(7) 

for p 2 p c .  The amplitude ratio, c-/c+ is different for lattice ( P 10) and continuum 
systems ( z 2)28 in 3d. For both ensembles the clusters are larger below p c  than above 
pc for the same Ip - pel. The different amplitude ratios suggest that the percolating 
clusters are more open in continuum than in lattice assembliesz8. Although the 
susceptibility exponent, y is universal the corresponding amplitude ratio does depend 
on the nature of the intermolecular interactions and the nature of the space (whether 
discrete or continuous). 

The functions Q, P ,  and x require finite-scaling corrections for these small periodic 
systems. 

The finite-scaling hypothesis supposes that physical properties are homogeneous 
functions of the critical-coupling parameters, E = I(p - p,(L))/p,(L)I and the length- 
scale of the system, L. Recall that, iff(x, y )  is a homogeneous function of two variables 
it obeys the following for an arbitrary constant, A, 

(8) 

e.g., if f(x, y )  = xzy3, then c = -2a  - 36. By choosing I b  = y -  ' then f(x, y )  can be 
written as, 

(9) 

f(X, y )  = AY(A"x, AbY), 

f(x,  y )  = y-c'bf(y-a/bx, 1). 

Returning to two cluster averages discussed in the text, P ,  = f ( ~ ,  L )  and 
can be written in the homogeneous forms, 

= g ( c ,  L )  

P ,  = L - q ( L ' / ' & ,  1) (10) 

(1 1) 

where the quantity L'/"E oc ( L / [ ) ' / "  is therefore essentially a ratio of two length-scales. 
In the limit, L -+ co and [ 4 L then P ,  - c@ and x - E - " .  This indicates that 
f(L'/", 1)  -+ (L~ '"E)@ and g(L'/"c, 1) + (L'ivc)-Y in this limit. In the other limit, L'/"& - 
0, [ $ L then f and g must reduce to L dependent constants. 

where c = p, a = - 1 and b = v, and 

x = LY~"g(L"'c, 1 ) .  
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130 D. M. HEYES 

There is another universal function, 

O = C (sn,(p,) - sn,(p))e- hs oc h'ld, 
S 

where h is a dummy variable and in Id 6 = co in 2d, 6 = 18 and in 3d, 6 = 5.0 -t 0.5 in 
3D14. At the percolation thre~hold '~ ,  

ns(p,) a s-r. (13) 

(14) 
where f ( z )  is a universal function. In random lattice percolation the critical exponents 
are interrelated by scaling laws, 

(15) 
where d is again the dimension of the ~ p a c e ' ~ . ' ~ ' ~ ~ .  

To illustrate these scaling laws, we show some preliminary results of 2d Lennard- 
Jones fluids, using the Molecular Dynamics, MD, These recent contin- 
uum simulations have shown that only certain of the percolation exponents are 
readily obtained from the small systems considered by microscopic computer 
simulation. Those requiring information above the percolation threshold are not 
obtainable because of finite N artefacts. However, we can readily obtain 5, d, and to a 
somewhat lesser degree of accuracy v.  The details of the M D  technique used for 
particles interacting via the LJ potential, 

(16) 
have been described elsewhere'. The MD simulations were performed on 2d and 3d 
systems. In 2d, square unit cells of area A were used containing N = 50,450 and 1250 
particles. In 3d systems up to N = 864 were considered. The Verlet algorithm was 
used to increment the positions of the molecules. LJ reduced units were used 
throughout7 i.e., k,T/& -+ T7 and number density, p = Na2/A. Distance is in LJ U. 

The cluster-search routine selects the percolating clusters that span all (periodic) 
space, not just those that span the MD cell3'. 

The percolation threshold density in the thermodynamic limit (i.e., N -+ co) can in 
principle be estimated from finite-N calculations by extrapolation. We make use of the 
density at which the probability of discovering a percolating cluster in a time 
step-the percolation fraction, P-equals 0.526. This is because the density at  which 
P = 0.5 shows the least system size dependence, as shown in Figure 1 ,  for a 3d system. 
The P ( p )  curves become sharper increasing N and with decreasing p ,  but all have the 
same rounded appearance. Finite scaling gives26, 

(17) 
where L is the sidelength of the MD cell ( L  = (N/p)'") and a is a constant depending 
on U, and T. It is extremely difficult with the range of system sizes (i.e., N )  and 
available computer time to obtain an accurate estimate of v by this route. The 
percolation fraction is not an intensive quantity so the statistics are not improved by 
using large systems. Indeed, they decrease because the number of time steps that can 
be consumed decreases as N increases. 

ns(p) = n,(p,)f(z), z = ( P  - pC)su; s -+ CO, P -+ p C .  

t = 2 + 1/6, u = l/(v + /I), 2 - O( = y + 2p = p(6 + 1 )  = dv, 

4(r) = 4&((o/rY2 - ( ~ / r ) 9 ,  

p,(N -+ CO) = p c ( N )  - uL-'". 
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131 CLUSTERING IN MOLECULAR SYSTEMS 
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I 

ola P o  , 1 
0.3 0.u 0.5 0.6  0 .7  0.8 0.9 I 1.1 

i 

P 
Figure 1 The percolation fraction, P, against density. p in 3d for T = 1.4562, u, = 1.02816. k e y :  N = 108 
(line) and N = 864 (squares). Note the small shift of P = 0.5 to lower p for increasing N, in line with scaling 
arguments. 

Percolation theory cannot predict the value of p,.  The continuum wotk to data on 
p ,  has been performed on hard-core particles and has revealed some interesting trends. 
Bug et al.25 found that attractive interactions can either lower or raise p,, depending 
on the value of the width of the potential well, and the value of oJa. They found that in 
the hard-core limit the percolation density decreases as temperature descends to the 
critical temperature, T,. This is because the attractive interations induce 'extra' local 
connectivity. In contrast, in the soft-core limit, p , ,  increases sharply in the vicinity of 
the liquid-vapour coexistence line. This is because the attractive interactions contract 
the local structure at low density so that these 'blobs' find it more difficult to connect 
together over long distance scales. LJ simulations on 2d and 3d systems reveal that the 
attractive interactions also affect p c .  However, the form differs from the previous 
square-well potential results. In the hard-core limit, p,,  increases slightly as T drops to 
T,. This we suggest is due to a contraction of the cage of particles around each particle, 
inhibiting long range connectivity. In the soft-core limit, the opposite trend is 
observed. This we ascribe to the enhanced connectivity due to the attractive 
interactions. I t  is not yet known why the T dependence of p ,  should be opposite for 
square-well and Lennard-Jones fluids. Both situations are intuitively plausible and 
could be affected by the shape of the interaction potential as well as the well-depth. 
Figure 2 illustrates the 2d LJ display of particles for os/o = 1.2 and 0.9. 
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D. M. HEYES 

Figure 2 Examples of non-percolating and percolating clusters in two-dimensional periodically repeating 
cells. 9 (2d) MD cells are shown. The large circles (diameter = uJ containing smaller circles at their centres 
form part of the percolating backbone. The circles with no centred inner circles form part of the included 
(non-percolating) clusters. The central square is the real MD cell, the surrounding cells are its images. Key, 
(a) pc = 0.63240, T =  0.6, u, = 1.2 and N = 450; (b) pc = 0.662378, T = 10.0, u, = 1.2 and N = 450. 
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CLUSTERING IN MOLECULAR SYSTEMS 133 

Figure 2 (continued) Examples of non-percolating and percolating clusters in two-dimensional periodi- 
cally repeating cells. 9 (2d) MD cells are shown. The large circles (diameter = us) containing smaller circles 
at their centres form part of the percolating backbone. The circles with no centred inner circles form part of 
the included (non-percolating) clusters. The central square is the real MD cell, the surrounding cells are its 
images. Key, (c) pc  = 1.398381, T = 0.6, us = 0.9 and N = 450; ( d )  p c  = 1.344638, T = 10.0, us = 0.9 and 
N = 450. 
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(a)  

. 
Y 

Y 

Y 

0.5 1 1.5 2 2. 

0 0.5 1 J .s 2 

log,~s) 
Figure 3 The cluster number distribution for non-percolating clusters, n,(s) for the pc LJ state points, (a) 
pc = 1.010848. T = 5.0, us = 1.0, N = 450, T = 2.0 f 0.1 and 2d, (b) pc  = 1.2564. T = 6.0, us = 0.9226. 
N = 256, T = 2.15 0.1 and 3d. 
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t 

I 

I 1 

I 
a 

L 
0 0.5 1 1 .s 2 

l o q p  
Figure 3 (continued) 
points. (c) p = 0.260933. T = 6.0, us = 1.31751, N = 256, T = 2.13 & 0.1, and 3d. 

The cluster number distribution for non-percolating clusters, n,(s) for the pr LJ state 

In 3 0  the LJ percolation threshold for a wide range of state points has been studied. 
Four (T,  a,) values have been considered in detail, each with a range of p about p E ,  two 
in the hard-core limit and two going towards the soft-core limit, at aJuHs = 1.05 and 
1.5, respectively. We have taken an effective temperature dependent hard-core 
diameter3’. In the hard-core limit T = 1.4562, as = 1.02816 and T = 6.0, 6, = 
0.92226. In the soft-core limit T = 1.4562, a, = 1.4688 and T = 6.0, as = 1.31751. The 
cluster statistics on both sides of the percolation transition were monitored for a range 
of system sizes. In the hard-core limit T = 1.4562, os = 1.02816 and T = 6.0, a, = 
0.92226, the pc are 0.868 _+ 0.001 and 1.253 f 0.001, respectively. In the soft-core limit 
T = 1.4562, us = 1.4688 and T = 6.0, as = 1.31751, the p c  are 0.164 f 0.001 and 
0.260 f 0.001, respectively. 

When a PC is observed that is a ca. 1 % probability that two PC will be observed at 
the same time for P z 0.5 f 0.3. This is independent of T or a,. In contrast, as P + 1 
or P -, 0 two percolating clusters are never observed simultaneously. This trend can 
be rationalised as follows. At low p any incipient percolating cluster is tenuous, a 
break anywhere will not form two percolating clusters because the two halves will not 
exceed the critical size needed to percolate. As P + 1 the percolating cluster is highly 
branched and interconnected. Therefore although the two clusters of a PC separated 
in half would exceed the critical size needed to percolate, the probability of breaking 
all the bonds needed to form these two clusters would be vanishingly small. 
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(a)  

0 - 

. . . -.-.- - 

m m  

0.5 I 1 .s 2 
v 

4 fl; 
A fl. 

6 08. 

A A 4 4  4 I 

MM 4 M  4 -1 

n 0.5 1 I .5 2 

log 10 CSI 
Figure4 The n,(s )  for the state points: (a) pc = 0.26093 ( x ), p = 0.24787, (square), p = 0.212517 (A) 
7 = 6.0, 6, = 1.3175, 3d and N = 256; (b) p c  = 0.26093 ( x ), p = 0.273976, (square). p = 0.302059 (A) 
T = 6.0. u5 = 1.3175, 3d and N = 256. 
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L’.’ 0.s 1 1.5 2 2.5 

log I0 CS) 

Figure4 (continued) The n,(s) for the state points: (c) p< = 0.86821 ( x ), p = 0.846505. (square), 
p = 0.825342 (A) T =  1.4562, us = 1.02816, 3d and N = 864. 

At the percolation threshold, lattice and previous continuum work suggest the 
following simple power law dependence, 

n,(p,)  = As-‘ .  (18) 
Lattice percolation gives T = 2.0 in 2d and T = 2.2 in 3d’’~’~ .  Figure 3 shows some 
typical examples that, within statistical uncertainty, agree with these values for T, 
Interestingly, this dependence applies from s = 1, which is not the case in lattice 
studies. One could argue that lattice models are “physically” unrealistic in the small s 
regime because of discrete coordination numbers. 

We now consider the cluster number distribution function, n,, above and below p, .  
Figure 4 gives typical examples. As is revealed there, the n,(p) in the vicinity of p ,  are 
very similar in form to ns(pc), manifesting a change in the prefactor A only. Removed 
from p,, random lattice percolation suggests, n,(p) = n,(p,)f(z), z = ( p  - pc)su 14. The 
form of f ( z )  is such that descending just below p, ,  n,(s) increases for small s but 
decreases for large s. As p - pE becomes more negative then this change in behaviour 
moves progressively to smaller s. This is consistent with the observation that the 
maximum size of a non-percolating cluster occursjust below p , .  As the total number of 
non-percolating clusters increase progressively below p ,  this observation indicates 
that, at least close to p c ,  the number of small clusters grows at the expense of the larger 
ones. 

Above p ,  the change in n,(p) from n,(p,) is quite different. There are always fewer 
clusters of all sizes s than at p, ,  a trend which becomes more pronounced as p - p ,  
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a .5 1 1.5 2 2.5 

log 10 CSI 
Figure S The s-dependence of the radius of gyration, R,, for the LJ state points, (a) p r  = 0.271699 ( x ), 
T = 10.0, us = 2.0, 2d. d, = 1.77 f 0.1 and N = 450; (b) pc = 1.010848 ( x ), T = 5.0, u, = 1.0, 2d, 
d, = 1.90 + 0.1 and N = 450. 
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Figure5 (continued) The s-dependence of the radius of gyration, R, ,  for the LJ state points, (c) 
pc = 1.398381 ( x ), T = 0.6. us = 0.9, 2d. d ,  = 2.0 f. 0.1 and N = 450; (d) pc = 1.2564 (square), p = 1.3125, 
( x ), p = 1.204917 (A) T =  6.0. us = 0.92226. 3d. d ,  = 2.36 f. 0.1 and N = 256. 
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0.9 

0 . 2 .  

becomes more positive, i.e., ns(p) 5 ns(p,). Figure 4(a), (b) and (c) for the 3d states 
reveal that these predictions are reproduced from the MD simulations. 

We now look at the tenuity of the non-percolating clusters at the percolation 
threshold by considering their radius of gyration, Rg,6,  

1 s - 1  s 

2 i j + i  
R ,  = ~ < 1 1 R;/s(s - 1) > 1'2, (19) 

where Rij is the vector separation between particles i and j. The scaling relationship 
here is R, cc sridf as s -+ 00. Figure 5 gives typical examples for 2d and 3d supercritical 
fluid LJ states about the percolation threshold. There is an intermediate s regime 
where this scaling relationship is obeyed. In 2d we obtain d ,  = 1.90 k 0.05,  in 
excellent agreement with the accepted value for 2d static random percolation, 
D, = 1.96. In 3d we obtain d ,  = 2.35 f 0.10, slightly lower than the accepted value for 
3d static random percolation, D , = 2 S 6 .  In practice, this scaling relationship applies 
well for 0.2 5 P 5 0 . 8 .  Therefore the fractal dimension of the percolating clusters is 
insensitive to p about p , .  As exhibited by nsr the finite size of the M D  cell leads to 
deviations from scaling laws in the s -+ N limit. 

The characteristic lengthscale, t, is defined by. 

\ 
\ 

Y 
\ 
t 
L 
\ 
\ 
x 

I -0.1 
. 

-2 -1.8 -1 *6 -1 -1 -1.2 -1 -0.8 

log CP,-P., 
Figure 6 Evaluation of v from a loglog plot of 5 against ( p ,  - p) for the 3d state: T =  6.0, u, = 1.31751. 
p ,  = 0.26262, N = 108. The states for p < p ,  are considered. The superposed line has a slope (=  - v )  of 
0.8 f 0.1. 
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0 0.2 0.u 0.6 0.8 I 

I 

0.1 I 3 

L 

0.4 

Figure7 Log-log plot of g(r ) ,  ( x ), and f i r ) ,  (square), for the following 2d states: (a) pt = 1.010848, 
T =  5.0, N = 450, us = 1.0 and (b) p c  = 0.271699, T =  10.0. N = 450, us = 2.0 where d ,  = 1.6 2 0.2 from 
the linear part of f i r ) .  
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Use of Eqns. ( 2 )  and (20) leads to v. Note that this is an alternative route to v, 
supplementing that from the percolation fraction. In Figure 6 we present a typical plot 
of log { against log(p - p , )  for 3d LJ fluids. For ( p  - p,) -+ 0 the { curve is distorted by 
the finite-N value. As ( p  - p , )  -+ 00 there is a distortion due to the limitation on the 
smallness of the cluster (i.e., 1 LJ atom). Therefore the intermediate ( p  - p, )  regime is 
likely to produce the most reliable estimate of v from (1). For the states considered we 
obtain a value of v = 0.8 +_ 0.1 close to the random lattice value. 

The pair radial distribution function, g(r)  and pair connectedness function, p(r) ,  for 
pair separations, r, are probes of the local structure in the whole fluid and in the 
percolating clusters, re~pect ively~*'~.  They are formally very similar. In 3d, 

g(r)  = n ( r ) / ( 4 n r 2 p W ,  ( 2 1 )  

where 6r is the radial increment for n(r);  n(r)  is the number of particles found on 
average within r - 6r /2  I r I r + 6r /2 ,  

p ( r )  = n ( r ) ~ , / ( 4 n r ~ p h r ) .  ( 2 2 )  

The search for pairs in p ( r )  is restricted to those particles within the same PC. As 
I -+ cz3 then p ( r )  -+ P',. For finite r there is a regime in which p ( r )  - r d f - d .  For the 
small N considered here it is not possible to go out far enough in r to determine D , in 
the hard-core limit. The p(r)  look similar to the g(r)  but attain a lower limiting value. 
When the pair separation becomes comparable to L the dimension of PC must 
approach the dimension of the space, d (= 3 here). This is a finite-size artefact. In the 
hard-core limit the p ( r )  shows many oscillations similar to g(r)  up to r z L/2 .  
Therefore the finite size of the cell precludes us from observing long-range correlations 
of the particles, especially for d = 2 where d ,  is very close to d .  There is not sufficient r 
range to extract a d,.  The low-density soft-core limit has fewer oscillation for the short 
range structure. Also a greater range of distance can be covered for a fixed N .  The g ( r )  
and p ( r )  for two 2d LJ states are given in Figure 7. The high density state in Figure 7(a) 
is at  p ,  = 1.0108 and T =  5.0, us = 1.0. The d ,  cannot be discerned from the 
oscillations. The Figure 7(b) examines a low density soft-core state in 2d, clearly 
showing a linear regime in p(r)  symptomatic of a D , = 1.6 f 0.1 below the Euclidean 
dimension. 

The coordination number is straightforwardly defined on a lattice, but not for a 
continuum fluid. The coordination number for a continuum fluid is defined as the 
aoerage number of molecules within us about an arbitrary molecule. It changes 
dramatically with distance close to us as it increases - rd .  This can be resolved into 
two components, the average obtained from all particles and their neighbours, n,, 
determined from g(r). There is also a coordination number, n2, obtained only from the 
neighbours within the PC, coming from p(r ) .  In 2d n, decreases from ca. 6 to 2.5 on 
going from the hard-core to the soft-core limit. It increases somewhat as T -+ T,. The 
other co-ordination number n2 is very close to the value of n, at each state point. 

In both 2d and 3d n2 must be greater than 2 (each particle must contain at least two 
neighbours to form a contiguous chain). In the soft-core limit the percolating cluster is 
mainly backbone (i.e., dangling branches do not dominate). 
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4 CONCLUSIONS 

Until recently we did not have mathematical “tools” with which to characterise 
random aggregates that result from growth processes and appear in equilibrium fluid 
phases. The advent of percolation theory and fractals has changed this situation. We 
are now at the beginning of what is likely to be a rich field of research with many 
applications in the physical sciences. 
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